SuperVector Achieves 3 Times Speed Increase at Existing Sites

SuperVector Achieves 3 Times Speed Increase at Existing Sites

supervector

Customer Requirements

In the rollout of fiber to the curb (FTTC) ultra-broadband, fibers are extended to outdoor cabinets, and existing copper lines from outdoor cabinets to end users can be retained. In addition to conserving copper line resources, FTTC ultra-broadband achieves faster bandwidth, faster time to market (TTM), and faster return on investment (ROI). An increasing number of operators consider FTTC ultra-broadband to be the optimal choice for ultra-broadband construction. However, at some sites, the locations of end users are at quite a distance from the outdoor cabinets. VDSL2 Vectoring can marginally improve the copper line access rate from outdoor cabinets to end users, but operators require higher line access rates to gain a competitive edge and to be prepared for service expansion. In this case, SuperVector is the best solution for these operators.

SuperVector: Overview and Advantages

Huawei launched SuperVector to improve the rate of existing copper lines on networks without moving outdoor cabinet closer to end users. With SuperVector, operators need only to replace service board and Vectoring engine board, while retaining existing outdoor cabinet and equipment shelf, to improve the copper line rate. For long-distance copper lines deployed in remote regions, the line rate performance is better with SuperVector as compared to the existing VDSL2 Vectoring technology.

Frequency Spread and Coding Optimization

Compared with VDSL2 Vectoring, SuperVector extends the frequency band from 17 MHz to 35 MHz, while using the same discrete multi-tone (DMT) and 4k tone space as existingVDSL2 Vectoring to guarantee the system is backward compatible. This 17–35 MHz frequency band is used to increase the downstream rate. However, only spectrum extension has a limited effect on long-distance copper lines. To better improve the long-distance copper line rate, Huawei has introduced an innovative coding technology, optimized signal spectrum, improved transmission efficiency, and significantly upgraded the potential of the copper access speed.

Crosstalk Cancellation over Full Frequency Band

The line rate performance is affected by crosstalk, which is generated between copper lines in the same bundle. SuperVector, like VDSL2 Vectoring, needs to resolve this problem. SuperVector extending frequency nearly doubles the volume of calculation data at crosstalk cancellation. For example, the crosstalk calculation generates an average of 0.5 Gbit/s data per VDSL2 Vectoring port; then the crosstalk calculation of 48- or 64-ports VDSL2 Vectoring will need about 30Gbit/s data throughput. In comparison, the crosstalk calculation of 48- or 64-port SuperVector will generate around 60Gbit/s throughput. To support the heavier crosstalk traffic, the SuperVector backplane bus supports higher bandwidth. On live networks, SuperVector boards can co-exist with VDSL2 Vectoring boards in the same shelf. The SuperVector engine board differentiates between 35 MHz frequency crosstalk and 17 MHz frequency crosstalk and implements crosstalk cancellation policies accordingly, ensuring that SuperVector services are compatible with VDSL2 Vectoring services.

Backward Compatibility and Smooth Evolution

SuperVector helps operators increase the access rate over copper lines on existing DSLAM, FTTC and FTTB sites without network restructuring or site relocation. SuperVector can be applied to all the VDSL2 Vectoring-friendly terminals deployed on a live network, facilitating a seamless upgrade from VDSL2 Vectoring. There are two scenarios involving system upgrade and bandwidth improvement:

Scenario 1: New SuperVector boards are installed in the shelf that houses existing VDSL2 Vectoring service boards. The SuperVector engine board processes the crosstalk parameters transmitted from both types of boards. Bandwidth is improved for new SuperVector users while remaining unchanged for VDSL2 Vectoring users.

Scenario 2: All existing VDSL2 Vectoring service boards are upgraded to new SuperVector boards, and some terminals are still VDSL2 Vectoring CPE. SuperVector automatically detects and adapts to VDSL2 Vectoring terminals and retains the original bandwidth for these terminals. If these terminals are replaced by SuperVector terminals, then the bandwidth is automatically increased.

Prototype, Standard, and Product

Huawei launched the SuperVector prototype in May 2013. Huawei, in cooperation with leading European operators, completed lab tests on this prototype in March 2014. The test results show that SuperVector supports a bandwidth of 400 Mbit/s at 300 meter, which is 3 times as the performance of VDSL2 Vectoring. The results also show that SuperVector supports a bandwidth of 100 Mbit/s at 800 meter, which meets the bandwidth requirements of 4K video services.

Discussions regarding the SuperVector standard are ongoing. It is yet to be determined if the SuperVector standard will recommend using the 35 MHz frequency band, coding optimization technology, and enhanced transmit power proposed by Huawei. All these factors will impact the line performance that can be achieved. Huawei is actively participating in the standardization and production of SuperVector. Huawei plans to develop products based on the final standard. Therefore, the specifications of Huawei's SuperVector products may be different from the specifications of the SuperVector prototype.

Applications and Customer Benefits

Copper line networks are important infrastructure for fixed network operators who use innovative copper line technologies for ultra-broadband construction. For operators, SuperVector will help achieve faster broadband, faster time to market, faster return on investment, and protection of network investment. Huawei's long-term investment in the copper line field continuously yields new technologies, helping operators quickly build ultra-broadband networks.

As global leader in broadband network technology, Huawei launched the industry first VDSL2 Vectoring and G.fast prototypes and products, and is leading the research and development of future-proof ultra-high speed 5GBB copper line access technology. SuperVector bridges the rate gap between Vectoring and G.fast, and enables operators to quickly increase the access rate without network restructuring. Huawei will continue to promote technology standardization and production, promoting cooperation across the industry chains. Huawei’s vision in development of ultra-broadband network is to drive the industry to faster broadband, wider coverage, and smarter connection, creating a better connected experience for end users.